七年级下册数学线上线下教学衔接具体计划参考5篇

发布时间:2022-08-04 17:20:02

七年级下册数学线上线下教学衔接具体计划参考5篇

七年级下册数学线上线下教学衔接具体计划参考篇1

  一、单项式

  1、都是数字与字母的乘积的代数式叫做单项式。

  2、单项式的数字因数叫做单项式的系数。

  3、单项式中所有字母的指数和叫做单项式的次数。

  4、单独一个数或一个字母也是单项式。

  5、只含有字母因式的单项式的系数是1或―1。

  6、单独的一个数字是单项式,它的系数是它本身。

  7、单独的一个非零常数的次数是0。

  8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

  9、单项式的系数包括它前面的符号。

  10、单项式的系数是带分数时,应化成假分数。

  11、单项式的系数是1或―1时,通常省略数字“1”。

  12、单项式的次数仅与字母有关,与单项式的系数无关。

  二、多项式

  1、几个单项式的和叫做多项式。

  2、多项式中的每一个单项式叫做多项式的项。

  3、多项式中不含字母的项叫做常数项。

  4、一个多项式有几项,就叫做几项式。

  5、多项式的每一项都包括项前面的符号。

  6、多项式没有系数的概念,但有次数的概念。

  7、多项式中次数的项的次数,叫做这个多项式的次数。

  三、整式

  1、单项式和多项式统称为整式。

  2、单项式或多项式都是整式。

  3、整式不一定是单项式。

  4、整式不一定是多项式。

  5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

  四、整式的加减

  1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

  3、几个整式相加减的一般步骤:

  (1)列出代数式:用括号把每个整式括起来,再用加减号连接。

  (2)按去括号法则去括号。

  (3)合并同类项。

  4、代数式求值的一般步骤:

  (1)代数式化简。

  (2)代入计算

  (3)对于某些特殊的代数式,可采用“整体代入”进行计算。

  五、同底数幂的乘法

  1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

  2、底数相同的幂叫做同底数幂。

  3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

  4、此法则也可以逆用,即:am+n=am﹒an。

  5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

  六、幂的乘方

  1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

  2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

  3、此法则也可以逆用,即:amn=(am)n=(an)m。

  七、积的乘方

  1、积的乘方是指底数是乘积形式的乘方。

  2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

  3、此法则也可以逆用,即:anbn=(ab)n。

  八、三种“幂的运算法则”异同点

  1、共同点:

  (1)法则中的底数不变,只对指数做运算。

  (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

  (3)对于含有3个或3个以上的运算,法则仍然成立。

  2、不同点:

  (1)同底数幂相乘是指数相加。

  (2)幂的乘方是指数相乘。

  (3)积的乘方是每个因式分别乘方,再将结果相乘。

  九、同底数幂的除法

  1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am—n(a≠0)。

  2、此法则也可以逆用,即:am—n=am÷an(a≠0)。

  十、零指数幂

  1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

  十一、负指数幂

  1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

  注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

  十二、整式的乘法

  (一)单项式与单项式相乘

  1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

  2、系数相乘时,注意符号。

  3、相同字母的幂相乘时,底数不变,指数相加。

  4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

  5、单项式乘以单项式的结果仍是单项式。

  6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

  (二)单项式与多项式相乘

  1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

  2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

  3、积是一个多项式,其项数与多项式的项数相同。

  4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

  (三)多项式与多项式相乘

  1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

  2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

  3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

  4、运算结果中有同类项的要合并同类项。

  5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

  十三、平方差公式

  1、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的平方之差。

  2、平方差公式中的a、b可以是单项式,也可以是多项式。

  3、平方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

  4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

  (a+b)?(a—b)的形式,然后看a2与b2是否容易计算。

 

 

七年级下册数学线上线下教学衔接具体计划参考篇2

  1.130°.2.36°16′30″.3.50°.4.(1)54°34′,125°26′;(2)α-90°.5.47.6.D.7.A.8.C.9.D.10.138°.

  11.125°.12.∠AOC+∠BOC=2(∠DOC+∠COE)=2×90°=180°,A,O,B共线.13.设∠BOE=x°,∠EOC=2x°,∠AOB=180-3x,∠DOB=72-x.得方程(72-x)×2=180-3x,解得x=36.即∠EOC=72°.

  14.∠BOC+∠COD+∠AOD=270°,∠EOF=170°,∠AOE+∠BOF=190°-90°=100°.∠COF+∠DOE=100°.又∠EOF=170°,∠COD=170°-100°=70°.

  检测站

  1.45°.2.98.505°.3.∠AOB,∠BOC.∠AOB,∠BOD.4.C.5.D.6.∠BOD,∠FOE,∠BOC;∠BOF.7.45°.8.97.5°.

  9.1

  1.∠END.2.DE,AB,BC;AB,BC,DE.3.B.

  4.C.5.∠CAD,∠BAC,∠B.6.同位角:∠EAD与∠B;∠EAC与∠B;内错角:∠DAC与∠C;∠EAC与∠C.同旁内角:∠DAB与∠B;∠BAC与∠B.7.略.

  9.2

  1.相交,平行.2.不相交.3.一.4.C.5.略.6.略.

  7.正方形.8.略.9.3

  1.65°,两直线平行,同位角相等,65°,对顶角相等.

  2.65°.3.B.4.C.5.130°.6.∠B,∠EFC,∠ADE.7.40°.

  9.4第1课时

  1.AC,BD,内错角相等,两直线平行.2.(1)EN,BD;(2)AB,CD.3.B.4.∠5=∠2=105°,∠5+∠1=180°.5.DE∥MN.由AB∥MN,DE∥AB.6.提示:由AD∥BC,得∠A+∠B=180°,∠C+∠B=180°,AB∥CD.7.(1)由∠3=∠B,知FD∥AB,知∠4=∠A;(2)由ED∥AC,知∠1=∠C,∠BED=∠A.

  第2课时

  1.4厘米.2.BD,BE.3.D.4.由∠B=∠C,知AB∥CD,故∠A=∠D.5.∠1=∠GMC=90°-∠2.

  6.(1)∠MDF=∠MBE,BE∥DF;(2)不是;它是AB和CD之间的距离.7.在∠B内画射线BF∥AE,则BF∥CD.∠ABF=120°,∠FBC=30°,∠C=180°-30°=150°.

七年级下册数学线上线下教学衔接具体计划参考篇3

  数学加法心算技巧

  1、分 裂再凑整数加法;

  比如;8+5=13,先把“5”分 裂成“2”和“3”;那么就是8+2+3=10;

  2、比如;77+8=85,先把“8”分 裂成“3”和“5”;那么就是77+3+5=85;

  3、变整数再减去

  比如,26+18=44,把“18”变成“20-2”,那么就是26+20-2=44;

  4、比如;387+983=1370,把“983”变成“1000-17”,那么就是387+1000-17=1370;

  5、错位数相加

  比如,个位加十位得数是个位的;

  51+15=66;这样算:5+1得6;1+5得6;两6合拼

  72+27=99;这样算:7+2得9;2+7得9;两9合拼

  63+36=99;这样算:6+3得9;3+6得9;两9合拼

  52+25=77;这样算:5+2得7;2+5得7;两7合拼

  6、比如,个位加十位得数是十位的;

  78+87=165;这样算:7+8=15,再把“15”两个数字“1”和“5”相加得6,把这个“6”放在“15”的中间,得出“165”;

  67+76=143,这样算:6+7=13,再把“13”两个数字“1”和“3”相加得4,把这个“4”放在“13”的中间,得出“143”;

七年级下册数学线上线下教学衔接具体计划参考篇4

  概率

  一、事件:

  1、事件分为必然事件、不可能事件、不确定事件。

  2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

  3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

  4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

  二、等可能性:是指几种事件发生的可能性相等。

  1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

  2、必然事件发生的概率为1,记作P(必然事件)=1;

  3、不可能事件发生的概率为0,记作P(不可能事件)=0;

  4、不确定事件发生的概率在0—1之间,记作0

  三、几何概率

  1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

  2、求几何概率:

  (1)首先分析事件所占的面积与总面积的关系;

  (2)然后计算出各部分的面积;

  (3)最后代入公式求出几何概率。

  三角形

  1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的`图形。

  2、判断三条线段能否组成三角形。

  ①a+b>c(ab为最短的两条线段)

  ②a—b

  3、第三边取值范围:a—b

  4、对应周长取值范围

  若两边分别为a,b则周长的取值范围是2a

  如两边分别为5和7则周长的取值范围是14

  5、三角形中三角的关系

  (1)、三角形内角和定理:三角形的三个内角的和等于1800。

  n边行内角和公式(n—2)

  (2)、三角形按内角的大小可分为三类:

  (1)锐角三角形,即三角形的三个内角都是锐角的三角形;

  (2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。

  注:直角三角形的性质:直角三角形的两个锐角互余。

  (3)钝角三角形,即有一个内角是钝角的三角形。

  (3)、判定一个三角形的形状主要看三角形中角的度数。

  (4)、直角三角形的面积等于两直角边乘积的一半。

  6、三角形的三条重要线段

  (1)、三角形的角平分线:

  1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。(内心)

  (2)、三角形的中线:

  1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

  2、三角形有三条中线,它们相交于三角形内一点。(重心)

  3、三角形的中线把这个三角形分成面积相等的两个三角形

  (3)、三角形的高线:

  1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。

  2、任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)

  7、相关命题:

  1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

  2)锐角三角形中的锐角的取值范围是60≤X<90。锐角不小于60度。

  3)任意一个三角形两角平分线的夹角=90+第三角的一半。

  4)钝角三角形有两条高在外部。

  5)全等图形的大小(面积、周长)、形状都相同。

  6)面积相等的两个三角形不一定是全等图形。

  7)能够完全重合的两个图形是全等图形。

  8)三角形具有稳定性。

  9)三条边分别对应相等的两个三角形全等。

  10)三个角对应相等的两个三角形不一定全等。

  11)两个等边三角形不一定全等。

  12)两角及一边对应相等的两个三角形全等。

  13)两边及一角对应相等的两个三角形不一定全等。

  14)两边及它们的夹角对应相等的两个三角形全等。

  15)两条直角边对应相等的两个直角三角形全等。

  16)一条斜边和一直角边对应相等的两个三角形全等。

  17)一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

  18)一角和一边对应相等的两个直角三角形不一定全等。

  19)有一个角是60的等腰三角形是等边三角形。

  8、全等图形

  1、两个能够重合的图形称为全等图形。

  2、全等图形的性质:全等图形的形状和大小都相同。

  9、全等三角形

  1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。

  2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。

  10、全等三角形的判定

  1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。

  2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。

  3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。

  4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。

  11、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。

  12、利用三角形全等测距离;

  13、、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。

七年级下册数学线上线下教学衔接具体计划参考篇5

  学者贵知其当然与所以然,若偶能然,不得谓为学。下面是课件网小编为您推荐苏科版七年级下册数学练习册答案四篇。

推荐访问:线上 下册 衔接 六年级数学线上线下教学衔接计划 小学数学线上线下教学衔接计划 七年级下册线上安排计划 七年级数学线上授课教学计划 七年级下册数学课程规划 六年级下册数学线上教学计划 七年级地理下册线上教学计划 数学线上线下教学有效衔接 七年级数学开学教学衔接计划 七年级地理线上教学计划

版权所有:众一秘书网 2005-2024 未经授权禁止复制或建立镜像[众一秘书网]所有资源完全免费共享

Powered by 众一秘书网 © All Rights Reserved.。备案号: 辽ICP备05005627号-1