拉深,第3节__圆筒形件拉深计算【精选推荐】

发布时间:2022-06-29 13:55:02

下面是小编为大家整理的拉深,第3节__圆筒形件拉深计算【精选推荐】,供大家参考。

拉深,第3节__圆筒形件拉深计算【精选推荐】

 

  第三节

 圆筒形件的拉深计算

  一、毛坯尺寸计算

  1. 形状简单的旋转体拉深件的毛坯直径 在不变薄的拉深中,材料厚度虽有变化,但其平均直径与毛坯原始厚度十分接近。因此毛坯展开尺寸可根据毛坯面积等于拉深件面积的原则来确定。由于材料的各项异性以及拉深时金属流动条件的差异,为了保证零件的尺寸,必须留出修边余量,在计算毛坯尺寸时,必须计入修边余量,修边余量的数值可查表 4-4 和 4-5。

 表 表 4 – 4

 无凸缘圆筒形拉深件的修边余量 δ δ

 (单位:mm)

 工件高度 h 工价的相对高度 h/d 附

  图 >0.5~0.8 >0.8~1.6 >1.6~2.5 >2.5~4 ≤10 >10~20 >20~50 >50~100 >100~150 >150~200 >200~250 >250 1.0 1.2 2 3 4 5 6 7 1.2 1.6 2.5 3.8 5 6.3 7.5 8.5 1.5 2 3.3 5 6.5 8 9 10 2 2.5 4 6 8 10 11 12

 表 表 4 – 5

 有凸缘圆筒形拉深件的修边余量 δ δ

 (单位:mm)

 凸缘直径 d凸 凸缘的相对直径 d 凸/d 附

  图 1.5 以下 >1.5~2 >2 ~2.5 >2.5 ≤25 >25~50 >50~100 >100~150 >150~200 >200~250 > 250 1.8 2.5 3.5 4.3 5.0 5.5 6 1.6 2.0 3.0 3.6 4.2 4.6 5 1.4 1.8 2.5 3.0 3.5 3.8 4 1.2 1.6 2.2 2.5 2.7 2.8 3

 毛坯直径按下式确定:

 (4-4)

 式中 ——

 包括修边余量的拉深件的表面积;

  —— 拉深件各部表面积的代数和。

 例如图 4-21 有凸缘和圆筒拉深件的毛坯直径计算,可先将该零件分解成五个简单的几个形状,按表 4-6 所列公式求得 、 、 、 、 ,然后再按公式(4-4)求出。

 04 4D A A  0A A1A2A3A4A5A

  图 4-21 筒形见毛坯尺寸的确定 表 4-6

 简单几何形状表面积的计算公式 图示 计算公式 图示 计算公式

  220.78544DA D  2 6.28 A rh rh   2 22 14( ) d d A 2 22 10.7854 ( ) A d d  2 6.28 A rh rh   1A d h  2 22 6.28 A r r   1 22 ( )2d dA s 2 2S c h  2 6.28 A rh rh   2222rdA r  24.94 6.28 rd r  2( )dA hh  2222rdA r  24.94 6.28 rd r  29.87 A rd rd   ( 2 ) A ds hr   29.87 A rd rd   

  对于常用的拉深件.可选用表 4-7 所列公式直接求得其毛坏直径 。

 表 表 4 4- - 7 常用旋转体拉深件毛坯直径的计算公式 序号 零件形状图 毛坯直径

 1

  2

  3

  4

  5

  6

  ( 2 ) A ds hr   22 2 A GS Gr    19.74Gr 22 2 A GS Gr    19.74Gr 29.87 A rd rd   22 2 A GS Gr    9.87Gr 17.7 A rd DD24dh d 214d h d 2dl2 ( 2 ) d l h 23 1 1 2 24( ) d d h d h  22 1 2 2 2 34( ) 2 ( ) d d h d h l d d    

 7

  8

  9

  10

  11

  12

  13

 14

 或

 15

 16

  21 1 2 22 ( ) 4 d l d d d h   21 1 22 ( ) d l d d  2 2 21 1 2 3 22 ( ) d l d d d d    22 1 2 24( ) d d h d h  21 1 1 24 2 ( ) d d h l d d   21 12 ( 4 ) d r d r   d d r rd d222328 28 . 6 121   rrd h d d828 . 6 421 1 221  r rd h d d 56 . 0 72 . 1 422 221  d d h d r rd d2223 224 8 2 121   2 21 1 2 32 8 2 ( ) d rd r l d d     

 17

  18

  当 时,

 当 时,

 19

 20

  当 时,

 当 时,

 21

  或

 22

  23

 24

  25

  2 21 2 1 14 6.28 8 d d h rd r   r r12 21 1 2 16.28 8 4 d rd r d h   22 16.28 4.56 rd r  r r12 21 2 1 24 2 ( ) 4 d d h r d d r      2 21 1 2 2 32 8 4 2 ( ) d rd r h h l d d      r r12 2 2 2 21 1 2 1 1 2 1 4 36.28 8 4 6.28 4.56 d rd r d h rd r d d       r r124 2 24 3.44 d d h rd Rh 8h S 42 2h d 42 22d d 414 . 1 22d d2221) (2 1 121 2 414 . 1 d d l h d d  

 26

 27

  28

  29

 30

  31

  或

 32

  33

  34

  )] (2[2 1 2 12121 4 d d h d h dl   ) (22124 dh h d ) (2 12122 4 h d h d ) (2 12 21 4 414 . 1 d d l h d  ) (2 121 414 . 1 d d l d  dh d 2 414 . 112 dh 2h d d d 412221 )2(412122lh d d d  rh dhRxb x r 8 4 arcsin 82)] ( [  

 35

  注:1. 尺寸按工件材料厚度中心层尺寸计算。

 2. 对于厚度小于 1mm 的拉深件,可不按材料厚度中心层尺寸计算,而根据工件外壁尺寸计算。

 3. 对于部分未考虑工件圆角半径的计算公式,在计算。有圆角半径的工件时计算结果要偏大,故此情形下,可不考虑或少考虑修边余量。

 如果某些拉深件筒口或凸缘边沿不要求十分平齐,则工件在拉深后可不进行修边,但由于表 4-6、表 4-7 的计箅公式都没有考虑到实际材料在拉深后厚度发生变化的自然特征,困此为了比较准确的求的毛坯直径,以满足工件不修边的要求 ,对于不进行修边的拉深件的毛坯直径计算,应考虑材料变薄的的因素,其公式如下:

 毛坯直径计算,应考虑材料变薄的的因素,其公式如下:

 (4-15)

 式中

 —— 毛坯直径(mm)

  —— 不加修边余量的冲件表面积( )

  —— 平均变薄系数(表 4-8)

 表 4-8

 用压边圈拉深时材料变薄系数及面积改变系数 相对圆角半径

 相对间隙

 单位压边力

 拉深速度

 平均变薄系数

 面积改变系数

 >3 3~2 <2 >1.1 1.1~1.0 <1.0~0.98 1.1~2.0 2.0~2.5 2.5~3.0 <0.2 0.2~0.4 >0.4 1.0~0.97 0.97~0.93 0.93~0.90 1.00~1.03 1.03~1.08 1.08~1.11 表中

 —— 凹模圆角半径 ;

 ——

 材料厚度;

 —— 凸模圆角半径 ;

 ——

 拉深件平均厚度;

 —— 凹模直径 ;

 ——

 毛坯面积;

 —— 凸模直径;

 ——

 拉深后的工件实际面积;

 注:

 表中 a 叙述对于形状简单只进行深的冲件,应取较大值,对于形状复杂须经过多次拉深的冲件,取较小值。

 2.

 形状复杂的旋转体拉深件的毛坯直径 形状复杂的旋转体拉深毛坯直径的计算可利用久里金法则,即任何形状的母线 绕轴线 旋转,所得的旋转体面积等于母线长度 与其重心绕轴旋转所得周长 的乘积( 是该段母线重心h d h d d2 2 1 121 4 4 1.13 1.13AD Aa DA2mm0r rRt凸 凹02D dct凹 凸aP MP1( ) v m s 1tat1AA r 凹tr 凸1tD 凹Ad 凸1AAB YYL 2 X  X

 至轴线的距离)(图 4-22)即:

 旋转体面积:

 毛坯面积:

 ( ——毛坯直径)

 因

  故

  (4-6)

 求毛坯直径的方法有三种: (1)解析法

 次方法适用与直线和圆弧相连接的形状如图 4-23。

 图 4--22

 旋转体母线

 图 4-23

 由直线和圆弧连接的母线 对于直线和圆弧相连接的旋转体拉深件,可将母线分成简单的(直线和圆弧)线段 1、2、3….n,算出各段的长度(圆弧可从表 4-9、4-10 查得)

 、 、 …… ,再算出各线段的重心至轴线的距离(圆弧的重心至轴线的距离可从表 4-12、4-13 查得)

 、 、 …… ,然后按公式(4-6)计算(或从表 4-13 查的)毛坯直径 。

 表 4-9

 中心角 时的弧长

 2 A LX  24DAD0A A 1 1 2 2 3 38 8( ) 8n nD LX l x l x l x l x lx      1l2l3lnl1x2x3xnxD90    L

  例:

  查弧长

  41

 64.40

 0.2

 0.31 0.05

 0.08 41.25

  64.79

  0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.02

 0.03

 0.05

 0.06

 0.08

 0.09

 0.11

 0.12

 0.14

 0.16

 0.31

 0.47

 0.63

 0.79

 0.94

 1.10

 1.26

 1.41

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 1.57

 3.14

 4.71

 6.28

 7.85

 9.42

 11.00

 12.57

 14.14

 15.71

 17.28

 18.85

 20.42

 21.99

 23.56

 25.13

 26.70

 28.27

 29.85

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 31.42

 32.99

 34.56

 36.13

 37.70

 39.27

 40.84

 42.41

 43.98

 45.55

 47.12

 48.69

 50.27

 51.84

 53.41

 54.98

 56.55

 58.12

 59.69

 61.26

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 62.83

 64.40

 65.97

 67.54

 69.12

 70.69

 72.26

 73.83

 75.40

 76.97

 78.54

 80.11

 81.68

 82.25

 84.82

 86.39

 87.96

 89.54

 91.11

 92.68

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 94.25

 95.82

 97.39

 98.96

 100.53

 102.10

 103.67

 105.24

 106.81

 108.39

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 109.96

 111.53

 113.10

 114.67

 116.24

 117.81

 119.38

 120.95

 122.52

 124.09

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 125.66

 127.23

 128.81

 130.38

 131.95

 133.52

 135.09

 136.66

 138.23

 139.80

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 141.37

 142.94

 144.51

 146.08

 147.66

 149.23

 150.80

 152.37

 153.94

 155.51

 表 表 4 4- - 10 中心角 时的弧长

  例:

  求弧长

 2L R41.25 R  LL RR L R L R L R L90    1L   1 R 1 0180L R L R  25.33   22.5 R  L(0.436 0.009) 22.5 10.01 L    ( )   ()  1L1L1L1L1L

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 0.017

 0.035

 0.052

 0.070

 0.087

 0.105

 0.122

 0.140

 0.157

 0.175

 0.192

 0.209

 0.227

 0.244

 0.262

 0.279

 0.297

 0.314

 0.332

 0.349

 0.366

 0.384

 0.401

 0.419

 0.436

 0.454

 0.471

 0.489

 0.506

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 0.524

 0.541

 0.558

 0.576

 0.593

 0.611

 0.628

 0.646

 0.663

 0.681

 0.698

 0.715

 0.733

 0.750

 0.768

 0.785

 0.803

 0.820

 0.838

 0.855

 0.873

 0.890

 0.907

 0.925

 0.942

 0.960

 0.977

 0.955

 1.012

 1.030

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 1.047

 1.064

 1.082

 1.099

 1.117

 1.134

 1.152

 1.169

 1.187

 1.204

 1.222

 1.239

 1.256

 1.274

 1.291

 1.309

 1.326

 1.344

 1.361

 1.379

 1.396

 1.413

 1.431

 1.448

 1.466

 1.483

 1.501

 1.518

 1.536

 1.553

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 —

 —

 0.001

 0.001

 0.001

 0.002

 0.002

 0.002

 0.002

 0.003

 0.003

 0.003

 0.004

 0.004

 0.004

 0.005

 0.005

 0.005

 0.005

 0.006

 0.006

 0.006

 0.007

 0.007

 0.007

 0.008

 0.008

 0.008

 0.008

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 0.009

 0.009

 0.009

 0.010

 0.010

 0.010

 0.011

 0.011

 0.011

 0.011

 0.012

 0.012

 0.012

 0.013

 0.013

 0.013

 0.014

 0.014

 0.014

 0.014

 0.015

 0.015

 0.015

 0.016

 0.016

 0.016

 0.017

 0.017

 0.017

 0.017

 【例】:

 试计算图 4-24 所得旋转体拉深件(料厚 t=1mm)的毛坯直径。

  图 4-24 旋转体拉深件的毛坯计算 解:先算出直线长度和圆弧长度(查表 4-9、表 4-10)

 1 2 3 4 5 6 7 8l l l l l l l l 、 、 、 、 、 、 、169 3272l mm 27.85 l mm 

 再算出直线重心和圆弧重心至轴线的距离(查表 4-11、4-12)得:

 表 4-11 中心角 时弧的重心到 轴的距离 312.5 4.5 8 l mm   48 1.047 8.376 l mm   512 1.047 12.564 l mm   643.3 12.5 8sin60 12sin60 5.5 8 l mm      77.85 l mm 8114 83 2 9102l mm   12713.52x mm  227 3.18 30.18 x mm   363 1322x mm 432 8 8 0.827 33.384 x mm     583 2312 0.827 39.9242x mm   683 1422x mm 742 8 3.18 43.82 x mm    883 2 9 9522 2x mm   127 l mm 27.85 l mm 38 l mm 48.376 l mm 512.564 l mm 68 l mm 77.85 l mm 810 l mm 113.5 x mm 230.18 x mm 332 x mm 433.384 x mm 539.924 x mm 642 x mm 743.82 x mm 852 x mm 1 1364.5 l x 2 2236.91 l x 3 3256 l x 4 4279.62 l x 5 5501.61 l x 6 6336 l x 7 7343.99 l x 8 8520 l x 63 . 2838  x90    Y Y 

  例:

 =52.37

  52

  33.12

 0.3

 0.19 0.07

  0.05 52.37

 33.36 R x R x R x R x

  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

  1 2 3 4 5 6 7 8 9

  0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.05 0.06

  0.06 0.13 0.19 0.25 0.32 0.38 0.45 0.51 0.57

  0.64 1.27 1.91 2.55 3.18 3.82 4.46 5.10 5.73 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 6.37 7.01 7.64 8.28 8.92 9.55 10.19 10.83 11.46 12.10 12.74 13.37 14.01 14.65 15.29...

推荐访问:拉深 第3节__圆筒形件拉深计算 精选 计算 推荐

版权所有:众一秘书网 2005-2024 未经授权禁止复制或建立镜像[众一秘书网]所有资源完全免费共享

Powered by 众一秘书网 © All Rights Reserved.。备案号: 辽ICP备05005627号-1